Current expectations for laboratory testing and adverse smallpox vaccine reactions

- Poxvirus Section (DVRD/NCID/CDC)
- World Health Collaborating Center for Smallpox and other Poxvirus Infections

Inger Damon: Chief Russell Regnery

Poxvirus intro:

2 Subfamilies:

Chordopoxvirinae (vertebrate poxviruses)

- Orthopoxvirus (variola, vaccinia, cowpox, monkeypox, raccoonpox, camelpox, skunkpox, volepox, ectromelia, taterapox)
- Parapoxvirus (orf, pseudocowpox, ...)
- Avipoxvirus (canarypox, fowlpox...)
- Capripoxvirus (goatpox, lumpy skin disease...)
- Leporipoxvirus (myxoma, fibroma...)
- Molluscipoxvirus (molluscum contagiosum)
- Yatapoxvirus (tanapox, Yaba monkey tumor)
- Entomopoxviridae (insect poxviruses)

Orthopoxviruses (including vaccinia and variola)

- 180 to 200 kbp double stranded DNA genomes with over 180 predicted ORFs
 - Encodes transcription and replication enzymes
 - Encodes multiple proteins aimed at evasion of immune defense molecules:
 - Soluble cytokine and chemokine binding proteins
 - Caspase inhibitors, inhibitors of protein kinase PKR
 - Cytoplasmic replication
 - Infectious forms: IMV, CEV, EEV
 - No known unique viral receptor protein
 - Host ranges vary
 - Variola (host specific...man) vs vaccinia (wide host range)
 - 350 X 270 nm brick shaped particles by cryoelectron microscopy
 - Antigenically similar; serologic cross reactivity

Orthopoxviruses: spectrum of human disease in normal host

- Vaccinia, cowpox: localized infection
- Variola, monkeypox : systemic illness
- Camelpox: no known infections of humans
- Ectromelia: no infection of humans
- Raccoonpox, volepox, skunkpox: rare if any infection of humans with these animal pathogens

Febrile, vesicular rash illness algorithm for evaluating patients for smallpox

CENTERS FOR DISEASE

Draft 1/20/03 Do not reproduce

Key concepts of algorithm for evaluating pts for smallpox

- Product of practical experience and partnerships
- Uses existing resources for dx and exclusion of smallpox look-a-likes (especially 1.5m cases of chickenpox)
- Provide significant diagnostic benefits, even in absence of smallpox...encourages careful dx of other rash illnesses
- Minimize number of cases that require intensive investigation: focus attention where it is justified
- Provide rapid, thorough response to highly suspect cases
- Respond with vaccination if/when diagnosis confirmed
 Draft 1/20/03 Do not reproduce

Smallpox dx: the Bottom Line

- To rapidly recognize and respond to the first case of smallpox quickly without
 - Generating high numbers of false alarms
 - Disrupting the health care and public health systems
 - Increasing public anxiety
- Secondarily, benefit health care (in absence of smallpox) by enhancing rash illness dx capability
 Draft 1/20/03 Do not reproduce

Smallpox dx rational (pre-event)

 Multiple samples (& multiple tests) to improve predictive value for positive variola lab dx in absence of disease in nature.

 Multiple samples (e.g., biopsy) may provide means for dx of smallpox look-alikes; improves Public Health understanding of what can be clinically confused with smallpox

Vaccinia identification: lab expectations/considerations (I)

- Most AE cases linked directly to vaccination history or contact of vaccinee.
- Vaccinia therapeutic options limited to VIG or Cidofovir (?)
- Decision to use VIG or Cidofovir made at clinical level

Draft 1/20/03 Do not reproduce

Vaccinia identification: lab expectations/considerations (II)

- Identification of vaccinia in AE's will help improve Public Health understanding of AE's and vaccination risks; hopefully lead to better vaccines / vaccination strategies. Not a STAT function.
- LRN labs have means to detect vaccinia
 - But currently R-T PCR test considered by the FDA an "investigational device" or a "presumptive screening assay".
 - Test results for pt management must be confirmed at CDC.
- Rule out other possible etiologies

Smallpox vs vaccinia: Lab tests may be similar but expectations for results and responses different

- Pre-event smallpox dx implies international crisis & mass vaccination
- Smallpox dx implies pt isolation and vaccination of contacts
- Vaccinia AE's expected to occur in small numbers (not the prelude to a pandemic!)
- AE patient care decisions based primarily on pt history and clinical considerations

Smallpox & generalized vaccinia: Differential Diagnosis & other rash illnesses

- Varicella**
- Disseminated herpes zoster*
- Impetigo
- Drug eruptions
- Contact dermatitis
- Erythema multiforme
- Enteroviral infections
- Disseminated herpes simplex
- Scabies, insect bites
- Molluscum contagiosum (immunocompromised)

Laboratory Testing to Rule Out Other Rash Causing Diseases

- VZV: DFA, PCR, EM, Immunohistochemistry
- Streptococcus, staphylococcus: Gram stain, rapid tests
- Drug eruptions, allergic dermatitis: skin biopsy, pathology
- Enterovirus infections: PCR, immunohistochemistry

Laboratory Testing to Rule Out Other Rash Causing Diseases - Continued

- Herpes simplex: PCR, EM, Immunohistochemistry and Culture (with caution)
- Scabies: Evidence of organisms
- Others as indicated from clinical impression:
 - Rickettsia: PCR
 - Syphilis

Varicella Rule-Out

- History and Clinical Findings
- Laboratory:
 - VZV DFA (two commercial products: Meridian Diagnostics and Chemicon)
 - PCR ("Homebrew") plus LRN supported test
 - Electron microscopy
 - Refer All specimens with questionable results to DPH Laboratory for Confirmation

Draft 1/20/03 Do not reproduce

Generalized vaccinia, varicella, and smallpox: typical clinical features

	Generalized Vaccinia	Varicella (chickenpox)	Smallpox
Prodrome	Rare ??	Rare	Always
Distribution	Vac site + disseminated	Centripetal	Centrifugal
Lesions	Vac site + deep- seated pustules	Superficial vesicles	Deep-seated pustules
Progression	??	Rapid: some crusts <24 h	Slow: each stage 1-2 d
Stages of Dev't	Same (following vac) ?	Different	Same
Palms/soles	??	Extremely rare	Typical
Vac status	Recent smallpox vac or contact	Rare with VZV vac	Very rare with smallpox vac
Toxic	No	No	Yes

Draft 1/20/03 Do not reproduce

Smallpox (plus vaccinia?) Lab Algorithm

Level A (hospitals)* and/or

LRN B/C Laboratories

Low & Moderate Risk Specimens

(Green & Yellow Box)

Positive = Diagnosis of non-variola rash illness VZV, HSV DFA

VZV, HŠV, Enterovirus PCR (where available)

Other appropriate diagnostic assays, including viral culture

Negative:

- •Re-evaluate patient condition and assess need for dermatologic and histologic testing, including tests for erythema multiforme.
- Obtain detailed information about possible exposure to smallpox vaccines.

Tests for vaccinia and generic orthopox may be indicated. IF vaccinia -, generic orthopox +, contact CDC immediately.

•If patient symptoms progress to more closely resemble smallpox, all specimens should be referred to CDC (and regional labs when needed).

Orthopoxvirus-specific assays for identification of:

Vaccinia (e.g., generalized vaccinia)

Variola (smallpox)

Lab methods for confirmation of orthopoxvirus dx

- PCR related methods for DNA identification, e.g., real-time PCR
- Electron microscopy
- Histopathology
- Culture
- Serology
 - Antigen detection (IFA/DFA, EIA ag capture)...not yet available/licensed

Vaccinia-related disease: potential samples and tests

Samples:

- Lesion 'roofs' and crusts
- Vesicular fluids:
 - touch prep
 - Electron microscope grid
- Biopsy, autopsy

Tests:

- R-T PCR (LRN)
- Electron microscopy
- Isolation in cell culture
- Antigen Capture & DFA (in the future)
- Histopath

Sample requirements for Poxvirus DNA identification

- ✓ Lesion 'roofs' and crusts
- √ Vesicular fluids (touch prep)

- √ Biopsy, PM autopsy
- ✓ Others (e.g. CSF?)

Sample requirements for EM poxvirus identification**

- ✓ Lesion 'roofs' and crusts

 (grids subsequently made at lab)
- √ Vesicular fluids:
 - touch prep slide (grids made at lab)
 - electron microscope grids made on-site

** requires access to EM

Sample requirements for vaccinia (not variola*) isolation

- ✓ Lesion 'roofs' and crusts
- √ Vesicular fluids:
 - touch prep slide (reconstituted at lab)
- ✓ Frozen biopsy including PM tissue (?)
- ✓BSL-II conditions; vaccinated lab workers preferable
- *Variola referred to CDC (pre-event)

Sample requirements for histopathology

✓ Biopsy or autopsy formalin fixed (not frozen)

(remember to save fresh frozen bisected or duplicate sample for isolation)

Specimen collection

- Vaccinia and variola specimen collection essentially the same.
- Check CDC website for recent updates in orthopox specimen collections specifics:
 - http://www.bt.cdc.gov/agent/smallpox/responseplan/files/quide-d.pdf
 - Expect vaccinia specific updates in near future (first week December 2002)

What to collect? (I)

Vesicles:

- Use scalpel or 26 gauge needle to unroof vesicle – skin of roof goes to collection tube
 - Scrape base of vesicle with blunt edge scalpel, or wooden applicator and apply to microscope slide
- Lightly apply EM grid, shiny side down, against lesion. Repeat (X2) using more or less pressure.
- Repetitively touch a microscope slide to the lesion (touch prep)
- Allow slide, and grids to air dry for 10 minutes.
 Store in slide holder, and grid box,
 respectively

What to collect? (II)

Biopsy: 3.5-4 mm punch biopsy, bisect lesion, or obtain 2 biopsies.

1 sample in specimen collector tube (keep cold/frozen)

1 sample in formalin (not frozen).

Real-Time PCR assay: E9L-Vaccinia detection (Non-variola Eurasian orthopoxvirus assay)

- Samples are tested using primers and probe designed to detect Eurasian Orthopoxvirus other than variola
 - Potential human diseases detected:
 - Vaccinia **
 - Cowpox (Zoonotic disease of European origin)
 - Monkeypox (Zoonotic disease of central Africa)

Draft 1/20/03 Do not reproduce

Example of calibrated, R-T PCR data

Draft 1/20/03 Do not reproduce

Sensitivity of E9L vaccinia R-T PCR assay during validation at LRN labs

 16/16 labs detected equivalent of 100 pfu vaccinia from dried, touch-prep slide...very sensitive!

If smallpox were to re-emerge, test for vaccinia AE's would be modified to become test for variola virus DNA

 Alternate primer supplied...real-time PCR test otherwise essentially the same

Vaccinia/orthopox and variola: real time PCR assays

- E9L: VAC, MPX, CPV(TET); variola (FAM) and ABI 7700
 - Essential gene of poxviruses
 - 16S control for inhibitors
 - Can be used to detect vaccinia (adverse event monitoring); use TET portion
 - Can be used to detect variola use FAM and TET portions (100% specificity in blind evaluation of 451 specimens)

Orthopoxvirus generic R-T PCR test

- Different E9L gene primer/probe targets all human pathogenic orthopoxviruses
- Currently being validated in LRN test sites as an "environmental sample" test
- Could have potential role in identification of non-vaccinia orthopoxvirus infections
- Sensitivity expected to be as high as test for detection of vaccinia

Draft 1/20/03 Do not reproduce

Draft 1/20/03 Do not reproduce

Draft 1/20/03 Do not reproduce

Draft 1/20/03 Do not reproduce

CENTERS FOR DISEASE CONTROL AND PREVENTION

Negative Stain Electron Microscopy

vaccinia

~1/2 hour per sample (for experienced microscopist)

Orthopoxvirus cell culture isolation

HEK 293

HeLa **Uninfected, 24 hpi**

BSC-40

Variola (Ethiopia 17 R14-1X-72) infected, 24hpi

Selected issues relevant to implementation of pre-event vaccinia diagnostics

- Transition research/reference laboratory methods to routine patient care
 - Distribute test protocols
 - Test validation in multiple high-tech formats
 - Evaluation/validation of tests under 'field' conditions
 - Vaccinate testing personnel
 - QA/QC, Proficiency testing
- Reagents production/dispersal
 - Approval to use
- Development of vaccinia test algorithms (in conjunction with clinical algorithms)
- Involving private sector in rapid test development, licensure, deployment

Where to send orthopox specimens?

- Suspect vaccinia adverse events specimens that require identification of vaccinia go to closest Laboratory Response Network (LRN) laboratory.
 - Contact your State Public Health Lab Director for shipping address
 - All state and regional LRN labs can do realtime PCR for identification of vaccinia in AE's
- Specimens from persons with high suspicion of smallpox dx: Refer to Rash, Vesicular Disease Algorithm. Specimens go both to selected LRN with smallpox surge potential (contact CDC) and CDC simultaneously.

Specimen transport

- Standard dx specimen shipping guidelines available (subject to change): http://www.bt.cdc.gov/labissues/PackagingInfo.pdf
- Serum, if collected, should be refrigerated and shipped
 - If spun and separated on site, freeze
- Formalin fixed material should be shipped at room temperature DO NOT FREEZE
- EM grids should be shipped at room temperature
- All other virus containing material should be stored and shipped frozen, unless it will be overnight shipped, then room temperature or refrigerated
- Keep all virus containing material out of direct sunlight

Past and Future

- What about the Past (when low tech worked)?
 - During smallpox epidemics clinical dx drove immediate medical response
 - Electron microscopy
 - Gel-diffusion serologic antigen detection
- Future? (dx development evolving rapidly)
 - Additional PCR targets (e.g., HA gene)
 - Antigen capture and DFA
- Post-event, expectations for dx would change

For More Information

 CDC Smallpox website www.cdc.gov/smallpox

National Immunization Program website

www.cdc.gov/nip

